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ABSTRACT

A theoretical study of ice crystal/shock layer interaction has been
carried out in crder to assess the relative kinetic energy of an ice crystal
upon impact with a hypersonic vehicle. A dynamic fracture criterion has
heen developed which predicts the size of the ice crystal fragments formed
at the vehicle bow shock. An analysis of the ice crystal breakup predicts
that the outer fragments continue to shatter and prevent the shock layer
gas from penctrating the fragment cloud. The fragment cloud is then
treated as a deformable fluid drop, and the reduced impact velocity due
to lateral spreading is determined.
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1. INTRODUCTION

As a supersonic or hypersonic vehicle passes through a real atmos-
phere, it may encounter relatively large clouds of dust, rain or ice. A

(1}

great deal of attention has previously been given to the problems of dust

(2-1 ”, but n;ot until recently has significant effort been devoted to

an;l rain
the interaction of ice crystals with the shock layer, Wu(lz) has studied the
melting and vaporization of an ice crystal in a hypersonic shock layer and
demonstrated a significant reduction in particle size and impact velocity

for ice crystals initially of the order of 10l diameter. Larger crystais
were ralatively unaffected by melting and vaporization. In the same report,
Teare“z) demonstrated that .fice crystals may shatter at the vehicle bow-
shock. This introduces the possibility that the fractured ice crystal or
"fragment cloud" may deform as it passes through the vehicle shock layer.
This deformation will be lateral to the relative gas velocity and will tend to
increase the drag area of the fragment cloud. Hence, the velocity of the
fragment cloud will. decrease more rapidly than that of a rigid particle, and
the velocity with which the fragment cloud impacts the vehicle may be signi-
ficantly lower than that with which a ''rigid" ice crystal would impact the
vehicle.

To study this phenomenon we must first develop a criterion for the
dynamic fracture of the ice crystal at the vehicle shiock. This is carried out in
section II. The problem of ice crystal breakup is addressed in section 111,
and in section IV we examine the dynamics of the fragment cloud and demon-

strate the reduced impact velocity due to the lateral deformation of the cloud.
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The dynamic shattering criterion used in section II is subject to the experi-
mental verif{ication. Hcwever, the dynamics of the fragment cloud are insen-
sitive to the actual shattering process and the results of section IV are only

weakiy dependent on the dynamirc shattering criterion.



II, INITIAL FRACTURE OF THE ICE CRYSTAL

A) Conditions for Fracture

A schematic of ani : crystal entering a hypersonic shock layer is
given in Fig, 1. The ice crystal enters the vehicle shock layer with
velocity Ua, finds u':self moving with supersonic velocity relative to the
shock layer gas and thareby generates its own bow shock or crystal shock.
Only the normal component of the shock Mach number is important for the
pressure loading on the crystal. The pressure loading as a function of normal
Mach number Mx can be calculated with the aid of Fig. 2. The subscript x
represents conditions upstream of the vehicle shock and subscript y denotes
conditions in the vehicle shock layer., The Mach number of the ice crystal

.-relative to the shock layer gas is

v -v v
M. ==Y _Mm([X.
I a y\v
y y

which may be determined from the normal shock tables. The pressure P,

is the tntal pressure behind a shock of Mach number M; moving into a gas

of pressure Py. Thus, Pg may also be obtained from the normal shock
relations, The static yield criterlonlsindicates that fracture will occur in the

vehicle shock layer if the radius of Mohr's circle, (P.-Py)lz, is greater than

Sy, the yield stress of ice in shear.

P .P_>2S,

8"y =

If the speed of sound in the ice, a,, is greater than V., the ice crystal will

-3.
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shatter upsiream of the vehicle shock if

This fracture criterion is illustrated in Fig, 3 and demonstrates that most
hypersonic vehicles will shatter ice crystals through the bow _.hock wave .
ice crystal interaction process outlined above, However, this conclusionis
based on the application of a static yield criterion. We must proceed to

dovelop a model for the dynamic fracture of a brittle material under impulsive

loadirg.

B) Dynamic Fracture Criterion

Ice crystals passing the bow shock wave of a hypersonic vehicle are
subject to very short duration impulsive loads, and a consistent dynamic yield
criterion must be establigshed in order to analyze the shzitering problem,
First, we define three different times relevant to dynar-(c loads. Tp is the
duration of the applied load, T is the transient time for application of the
Joad (‘rT < Tp) and TR is the response time or the time required for a
specimen of length L. to know a load has been applied. Clearly, TR = L/a.o,
where a_ is the speed of sound in the specimen,

By definition, static loading occurs when Tx >> T and the static yield
stress (og) is the appropriate measure of the maximum load that the specimen
can tolerate without plastic deformation or failure. Clearly, when T << Tps .
a dvnarnic yield stress (o D) i8 a necessary measure of failure. When

=0 (.R) we assert that UD = QO (o’).

Tr

-6-
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One example of a situation where T+ = TR is a monochrematic

stress wave. Let X  be the longitudinal stress (tension or compression)
in a stress wave
Xx = Ak sin {ﬂkaot) cos (TMkx).
2
ka
o
when Ak =0 (c‘). An alternate way of looking at the stress wave is in

For an element of length 1/k, TR = -r,r = ( ). Therefore, failure occurs

terms of the particle velocities, Ux. The momentum equation

“x -
P ot xx
vields 2 Ak
U = cos (nka t) sin (rmrkx)
x E o

where E is young's modulus relating stress (o) to strain (e) (a = Ee and
a = \,Eh). If we interpret U, as a series of elements of length 1/k
(i4)

colliding with velocity aoAk/E, then impact theory indicates that failure
occurs when the impact velocity exceeds C (e'ao). Since g, = Ees. this
criteria reduces to Ak =0 (o.)

Having developed a rational argument for applying a static yield

criterion to the monochromatic stress wave, we now make the following

bold hypothesis which, while plausible, can be justifiad only if the subsequent

conciusions agree with experiment,
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HYPOTHESIS: Dynamic Yield Stress may be obtained by Fourier

-8

expanding the applied load and applying the monochromatic

g

yvieléd criterion to each wave. Failure occurs when Ak =Qg o
where Q is O (1) and is to be detarmined by applying this

technique to an impulsively loaded specimen.

The primary argument agetinst this hypothesis is that the single monochro.

2 matic wave may in no way represert the total stress which is the sum of all
the waves. While this is true, one could assert that a specimen of length L
would be fractured by its primary mode and that a small segment {(length 2)
of the specimen would be shattered by the primary mode associated with the
length £, even though the primary mode of the small segment would be a
higher order mode of the larger specimen. Hence, it is within this context
that we apply the monochromatic yield criterion to each Fourier component
of a dynamic load, While we cannot theoretically couiirm the basic hypothesis,
we proceed with the intention of verifying it through empirical confirmation
of the conclusions which are subsequent to the basic hypothesis,

C) Omes.Dimensional Fracture

Let us first examine the present theory by applying it to the problem

of a one.dimensional slab of thickness b that is impulsively loaded on one

side with pressure P’ for time T The load is impulsively removed at the

D’

end of that time interval ('rD << b/'ao). A schematic of the 10ading and un-

loading waves in (x, t) coordinates is given in Fig. 4. If we stand at some

«9-
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poeition x between a 'rnlz and b-no TD/Z. the time dependent force on an

element is shown in Fig, 5. The Fourier expansion of Xx is given by

4P nMta T ntwa,t
_Z [ o D o nNx
xx = v -m( T )-in( o )lin( 5 ).
n

Ths dynamic fracture criterion indicates that the primery mode {(n = 1) will

fracture the specimen if

4P' ( ﬂao TD) 2 P. ao TD
sin ~

2b b >Qas

or
Qb
p > wesevumanss § (} .
s ( ZIOTD) 8

Hence,the dynamic yield stress °p is given by
- Qb
OD —(-i—;:-;-D) 0. for TD << b/ao

and illustrates fhat 9p is inversely proportional to D and indeed is in excess

of o, provided that Q is of order unity.

To determine the value of Q, let us again take a one.dimensional slab
and impulsively load it in tension (T) for all time. The wave diagram is
illustrated in Fig. 6 and the pressure-time history is shown in Fig. 7. The

corresponding Fourier series representation of the dynamic load is given

i

by

alle




peoj wiaj yoys
aais|ndw| Jo4 ,87e4),, 3Jnssaid ¢ “bi

QO ﬁh mml Jmn oh. OO J&l
_I_ TS ae az _l q ]
ﬁ A- 4 . ﬂ T w— ] } 3 A\W
1 2 7
L L L]
9 9

al2a

2/7% =%/(x-q)="2
NOILVYNG 3587Nnd =% 3JH3IHM

[4 4
9,0 37 %X> a0
%p/q2> U

2 ALIAITVA 40 NOI93Y




2b/ag

b/a,

Fig. 6 Wave Diagram For Impulsive Load
in Tension

'13-



AT R AT AT AR VRIS R T e

UojsSua] uj peol
sAls|ndw | Joq , 8904}, 84nssasd [ b4

OO OU OU O.lo.!
! qb q¢ Q2 q
-~ 1 1 1
- 7% %o/ :
1 21 14
o/ X2 14¢
%y
X2-q = %2 2/4S X HO4 QITVA
X
¢ X




PN

G

S R AR AU SN o 25 it ¥

27

R 3 4 2 W T e 5

2T 4 S avwa t
X =T+ —— {cos atn - lisin ud cosl———] .
x nn b b
n ’

An impulsively applied load creates twice the strain as a slowly applied

(15}

lcad Thns, the impulsive load will fracture the specimen when T is

only U'IZ. Equating the amplitude of the n = 1 mode of the above expansion

o Qo., we determine

(] =

1D . )

A

Note that we have obtained Q by comparing the amplitude of standing waves,
Any subsegquent use of the value of Q must be made with standing wuves, A
completely consistent approach cou'!d be deveioped using traveling waves but

the values of Q would differ by a factcr of 2.

Having developed a criterion for fracture of a dynamically loaded
specimen, let us now examine shattering, Cons’der a one-dimensional slab
impulsively loaded on one side and held constant for all time, This is the
one .dimensional snalogue of the ice crystal loading at the bow shock of a

hypersonic vekicle, The Fourier expausion of the dynamic load is expressed

2 P' nﬂaot\ —
X, ® E - == con( T /sm( = )+ P.(l -x/b
n

Suppose P_ >> g, Then, not only can the n = 1 mode fracture the specimen,
-

but the n = 2 mode can break those fragments and so on up to the critical

~15-




valus of n (n.) where the nth mode is just strong encugh to fracture the

specimen, This value of n is determined by
2 P.
= Qo
n_ T
c
or p
3
L ra—
s

t = _?__ —(:i.)b
" a T\P *
<

These are the largest fragments that can survive the applied pressure Ps.
Smaller fragments can exist due to the shattering by other modes., That is,

the ncth mode fractures the specimen at values of x/b equal to

x _ 1 3 5 7 2w -1
b 2mn’ 2n’' 2n '2n =~ """ 777 2n :
¢ c < c
The nc-l mode fractures th: specimen at
x_ _1 3 5 7 ¢ -1 -1
b 2 (nc-l) 2 (nc-l) 2 (nc-I) 2 (nc-l) 2 (nc -1)

The largest fragment is then
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whersas the smallest is

-A—x—= 1 1 ] 1
b 2 (ﬂc-l} 2 n, zncz

Therefore, for one-dimensional shattering, we have determined that the

fragment sizes range from the smallest
2

to the largest, £

Since the ice crystal erosion problem is dominated by the large crystals,
we shall study the two.dimensional and three-dimensional shattering
problems with the understanding that the characteristic fragment size refers

to the largest fragments, and that smeller fragments can exist,

D. High Frequency Limitations

The results of section C) places no upper limit on the frequency of the
fracturing wave or, equivalently, place no lower limit on the size of the
shattered fragments., Itis well known“b) that the minimum wave length
that can cxist in a solid is of the order of the lattice spacing (s8) and the

maximum frequenrcy is the photon {requency wp

y ™ a /s
P o
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whe re a, is the specd of sound in the specimen, These concepta may be in.
cluded in the shattaring analysis by adding some "inertia' to the stress tensor.

Assuming
c=-E(e+8#d)

where ¢ is i‘-.#-and both E and B are constants, the momentumn equation

dt
becomes
2 2 3
pbg =§=E°g*ﬁﬁbu .
&t Ax Bthx

Solving the initial value problem,

U {x,t)=sin (Z;“) e'"‘t

for X\ real and @ complex we seec that propagation cannot exist above the fre-

quency 2/8 or below the wavelength naOB. Hence, it follows that

1 8
g -':;- ~ ;r-,
P o
Solving the boundary value problem,
.x/é‘B ifwt-2wx/)
U(x,t) = e e

for w, A snd the decay depth be all real, we obtain

Zao aoz

§ o —— o
2 2
€ w B sw

whe re 6e approaches s as u approaches wp.
For an applied load of arbitrary frequency y, caution must be taken

to insure that {4 > L before using the proposed dynamic yield criterion since

it omit' skin denth effects. For an impulsively loaded specimen of length L,

«]8a




the {requency corresponding to the n'th mode is

na
w -~ .
L

Validity of the shattering analysis requires

§ > L
e
or L>n23
or 1 >ns
max
and £ . . >s
min

Thus, the ice crystal shattering analysis is valid down to fragment sizes of
the order of s, High frequency effects do not influence the shattering by an
impulsively applied locad but maybecome important for high frequency loads
and large test specimens.

E. Two-Dimensional Fracture

The one -dimensionul shattering analysis is readily extended to two
dimensions by expanding the applied load into a double Fourier series,
Suppose we have a two-dimensional ice crystal with pressure Py impulsively
applied at one end. The applied preesure muy be expanded as a sqnare wave
over the lateral dimension (a) of the ice crystal

2P
P {y) - s lacosm sin mﬂz‘\
s i1 z m a .
y /

m

The one -dimensional plane wave solution was given by

2P (y) nnaz\
X_A_z ___a___ccs( bo / sin n:x
: : nn

\
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where ao was "E/ p and P' (y) was constant, Thus, the plane wave represen-

tation of an end loaded two -dimensional ice crystal is given by

nma t
o)

-4 P (l-cosmn)
X = : sin onrny sin n X cos
x 2 a b b
- mnn
m n

or, in standing wave form

2P (l-cosmm) nta_t
X = 8 cos 2
x 2 b
mm

m n

. cos{n"x N mﬂy} - cos {nﬂx L muy } (3)
b a b a

Similarly, we take a two.dimensional specimen #znd impulsively load it in

tension T for all time.

nma t
Q

_ 2T (l-cosmm) (cosnm-1)
x = CcOs o ———
X 2 b
mn
m n

o |cos nmx = mny - cos nmUx +mﬂzl
b b a ’

a

Just as in the one-dimensional case, failure occurs when the tension T

exceeds one half of ita static limit, Therefore, the coefficient relating the

wave amplitude to the yield stress is

o = 4

Q
ZD A}

-
Y
~~

The value of QZD is not restricted to a particular failure mode. The

-20-




maximuom tension T may be limited by either shear or tension. In obtaining
Eq. (4), it was stated only that the impulsive load is twice as strong as the
static load. The primary mode, whose amplitude is 8 T/ﬂz, will break when
3 " 1n 4 2
T is “1/2". Hence, QZD is 4/m .
For an axial load such as that applied to the ice crystal, Mohr's circle

predicts that the maximum shear (S) occurs at

¥y = tx : constant

and ir of strength X

Examining Eq. (3), we see that the strength of the (m, n) mode is 3 maximum

Yy =% (%Ng)x + constant

Therefore, the natur2zl mode selection that would maximize the shear stress

along

on the wave 18

m
n

ote

Under tihe constraint of b2 2, hence n 2 m, the shear stress on the two-

dimensional ice crystal may be expressed as

: -P_ (l_.cosmm)a mtma ¢t (
s o mm
S = 33 cos 3 cos )0 \X-Y }
m nh \
cos mn /x +
-21-




The dynamic {racture criterion predicta failure for the critical value of m,

denoted by m_. Equating the wave amplitude of Sto Q.. S ,
c 2P a ZD s
. -
53 - S.an for(b > a),
rnc'n b

the value of m, becomes

Note: for m < 1, we must use the one-dimensional rerults of Section C,
otherwise the lateral dimension of the fragment is greater than a., The
results are continuous if it is assumed that the maximum axial stress is
limited by the shear mode (o' =2 Ss). The characteristic fragment size

is a/m or
[=

ZS' 17’s b
— a —
‘ZD 5 for 55 > 3] °r (t<a),
s s
and (6)
Uu Ps b
‘ID- 'p:- b for ZS‘ < Py or(4 > a),

Hence, the two-dimensional shattering analysis is appropriate only if the
fragment size is lcss than the small dimension of the initial crystal, Other-

wise, shattering is one-dimensional along the length of the specimen.

F. Three.Dimensional Shattering

Suppose that we now have a three.dimensional crys.al of length b

22-




and base ares ‘Z (b z a). Expanding the applied force in a triple Fourier

series, the amplitude of the wave would be invarsely proportional to the mode

&
1
£
i
i
%
:

number cubed, p j
~ 2 %

n,m,q nmg

g

where n _m _ g 1
F  a a :

or Pa ;
A = e f

R q m°b N

Applying the dynamic fracture criterion to the amplitude of the wave, we

obtain .

or 1/3

The frzgment size is a/mc or :
2s \'/? s e
LBD = -? (a b) for Z—S’ 4 ; » (D

B
where the constant was chosen to be continuous with the one -dimensional

results when ‘BD = a, For L3D>a, we again use the one dimensional result.

o] P
] ] b
LID = (p—..) b for (—Z'S— f ;‘) .
B8 [ ]

Hence, the three-dimensional analysis is appropriate only if the fragment

size is less than a. Otherwise, shattering is one-dimensinnal along the length

of the specimen, «23-
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. ICE CRYSTAL BREAKUP

A) Dercription of the Model

Ag the fractured ice crystal passes through the vehicle shock
layer, it will break up and deform by the actinr of the shock laysr gas.
The deformation of the fragment cloud is studied in section IV. However,
on a time scale small with respect to the cloud deformation time, ice
crystal breakup must be assessed in order to determine the appropriate
model for the fragment cloud. That is, does the fragment cloud behave as
a separate fluid, a two phase flow or as a fluidized bed?

To begin to answer this question, we see from Section II-B that

the maximum velocity imparted to the solid particle is

3

Since a ~ 3 km/sec, E~105 atm and Ps ~ 107 atm (max), we obtain

u ~ 3Cm/sec
max

The expansion Mach number (relative to the gas) corresponding to Umax
would be 0.1 upstream of the vehicle shock and 0. 01 downstream of the
shock. Hence, the expansion is much too slow to be thought of as an
"explosion''. Rather, we think of it as a '"convective separation'' where the
crystal fragments separate with some characteristic velocity indicative of
the initial fracturing process. As the fragments separate, shock layer gas
will influx through the cracks as shown in Figure 8. The time scale for gas

to penetrate the fragment cloud is short compared to the time required

Prececing jags biamk  ->°
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for the fragment to respond dyna:nically to the gas. In fact, the latter
time scale is the deformation tirne and this is the distinction between
crystal breakup and cloud deformation.

. As the gas penetrates through the cracks, the gas seeks pressure
equilibrium (VP #0). However, the pressure difference across a frag-
ment is 4y P, which, if in excess of o, will fracture the fragment. Con-
tinuous fracturing of the fragments would increase the surface/volume of
the solid and prevent further influx of gas. If the incoming gas achieves
pressure equilibrium within the fragment cloud before further fracturing

can occur, the fragment cloud must be treated as a two phase flow. How-

;]
i3
4
Ed
g
3
S

ever, if further fracturing prevents the gas from penetrating the fragment
cloud, the cloud may be thought of as a separate gas which deforms in
much the same way that a liquid drop deforms. In the fcllowing sections,
it is shown that the fragment cloud may be treated as a separate fluid which
deforms as a continuous medium.
B) Formulation of the Model
Investigating the stagnation region ot the fragment cloud, we assume

that the velocity of the fragments is radial with magnitude increasing linearly in r

s, - (52)(2)

where Ro is the initial radius of the fragment cloud or ice crystal. If the

-27-
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where r{o) is the independent coordinate r and r(t) is the coordinate of
the fragment that wag initially at r. The porous volume within the frag-

ment cloud may be expressed as

4 3 4 3
= - T - - £2
p (3 i ) oy

where ( is the solid angle subt:nded by the stagnation area. ¥or

t<<R /U
[+] max

dv. = A dr (8)
P P

The equations of motion for the gas are written using a contrel volume
fixed to the fragments. It is assumed that the velocity of the fragments is

constant in time and small with respect to the gas velocity.

Gas Continuity:

L i) -3 (o)
5 auAp dr = - &= s:vp

Gas Momentum :

- — 5
Yy (Pu dvp) + Y Pu Ap) dr = -Ap >r dr - FdA. NdAn

whare P is the gas density, U the gas velocity and P is the gas przssure.

The shear force between the fragments and the gas is denoted by F and the

-28«

v Tiwmnrs R oo R e PR o T
4 T B e il il A



3

1
3
3
_5_{‘
==

normal pressure force is denoted by N.
To determine F, corsider the incompressible flow between parallel
plates separated by distance 2h

(hz - yz)/hz

u = u

&

where y is measured from the centerline, equidistant between the plates.

The average gas velocity; is related to u & by continuity
[h
\
T = u /l‘_!! = '2_
=g "\m) 3¢
The shear stress F is dotermined from
F_;:I_b_’._x. :2uglu= Jup
dy h h
-h

where | is the gas viscosity.
Tc determine h(r,t), note that the pi:rous volume per fragment is
6h£Z where £ is the fragmeut size. The number of fragments in volume

3
element Qrzdr is Qrzdr/l . Therefore, the porous volume element is

o o) (52

Comparing to eq (8), we obtain h.
a Pl
o 8

b = JER
(o]

The surface area of each fragment is 6‘-2. Thus, the net surface area in

volume element Orzdr is
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The normal presasure force N is

N =-2‘-'EE sign (3).

Th2 normal surface area associated with each fragment is 2hZ. Thus,

2
d
da_ = 2ht (9-——1‘;3 ")

s B o b bl Al

or

aoP'tE T zsign (@)o rldr

NdA = =
zznol

Using Vp. Ap, FdA‘ and NclAn . the continuity and momentum equations

become, vespectively,

t 0 -—— 2 o} reS ‘:

x.z,rrmur)sf,b-t.(tﬂ)-0 (9 i

and :
-—=_2_2 2

a P 1%
o 3
The fragment size L appearing in eq. (10) is a time dependent quantity which is

yet to be determined. If we apply a pressure gradient across z v ystal frag-

ment, that fragment will fracture when

l%§>c'. :

The shattering theory indicates that the fragment will break into smaller
- 1/3

fragments of size (7, / 4 %2 ) Lin a time scale of order ‘/ao.
r
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Therefore s )
I Il
Db, o WY
D % 1
( /aO)
or
= - 1 - r—
Bt %o ( bp) (11)
Br

Equations (9), (10) and (1 1) represent three squations in the four unknowns
P, u, pand £. In the next two sections, they are solved by specifying § in
the incompressible and sonic limits.

C) Incompressible Solution

In the incompressible limit, the continuity equation yields u,
u = -r/3t
and the momentum equation yields p (£, r,t)

- _2 2
— u — —
op - 44 E R, r L 4pr Prz (12)

b
i 302p82‘2t3 9 tz 54!rt2

1
ko

Substituting

3 T .’ 2 i r -1/3
S(4/%)) € (i—) € (“ ) 33 \L/\R_
TZ

OT (_i) '73 1 'TZ |
‘0

icto the shattering relation, eq. (l11), yields

(13)

[
i A3

JRoehiingy40. T AR R




L

7

B Wl voag s W SN 455~ S R I

ﬁifé r:i f

e = (£)1f3(_£_)1/3(_£_:_)2/9 E \7/9
(o] P Rey P' 3:)

- 5/9
1/3 _ 2/9
€ =(%) / Py / El/%“31/3"3)

o} 1/9
K = (24)1/3 (-3-)

P
8

For the ice cyrstal/shock layer interaction problem, we are interested

in the following range of values.
Rey = 10 to 10°
Ps = 10 atm to 103 atm
= 10 atm
. -
100 p

105 atm

p

E

e

Figure 9 illustrates that our range of interest (cross hatched region) lies in

the domain where Eo >> El,eo >>K€l, and co >>1, Thus, for r near R ,
(o]

equation (13) becomes
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Fig. 9 Ordering Of The Shattering
Equation (I ncompressibie Fiow)

-33a




2 l/3
Di4/d ) (T) T
O

2]

BT =-1+ = : (14)
[}

The nature of equation (14) depends on the size of €,- Fore <<},
shattering will stop at some value of 4 near ‘o {shattering stops when

.33
37 = 0or when £ = 0). However, for the case of interest, (€ >>1) )

the approximate solution to {14) is

‘ -
e T 1 -7 (i5)

o
for TS1(4=0for T> 1). Thus, continuous shattering at r = R breaks

o
the outer fragments into tiny fmgments which will prevent further penetra-
tion by the shock layer gas.
To estimate the penetration distance of the shock layer gas, we

assume that the pressure gradient at r = Ro is continuous over the penetra-

tion distance, b.
6:9/(92) (6 <<R) (16)
s or max o
From (15) and {12), the pressure gradient is expressed in terms of dimen-

sionless parameters previously defined.
3

o) Co cs
— X ——-3—-——-—2— (rz R )
°r  atum ° .
o] -
The penetration distance becomes
3 2 B
(1.7 :
P. (1-7)

3
€ o
o s

I
2
o




P PO RPN

TR, T
x i

s [
N5 S5 oA B s i Yo et o il

8 P

max =' -3

‘ -

[ 300 € 3
s o

For the range of parameters illustrated in Figure 9, 6ma.x is much less
thar l'o' Thus, the shock layer gas does not penetrate the fragment dawd, and
th=s fragment cloud may be treated as a separate gas or incompressible
fluid without surface tension.
D) Sonic Solution
The gas flux into the porous regions of the fragment cloud is more

likely to be sonic than incompressible. Rewriting the shattering equation

- —_K
foru = u , we obtain
4
— 3 -1/3
*(z) & ¢
o = -1+ 2 + B (17)
o7 -.i 1-2 608
L
o)
wnere we agssumed
—_— e ¥
Pu u =P

and

by p=w\1y_r—\I
€=(12)3(L) 3(p)/3 E
2 R ey ao ? o “lap /3
-] 8 .

—~&
Foru = a and the range of parameters indicated in Sectinn C), Figure 10

. 3
illustrates that the CZ term in eq. (17) is dominant.

.

L ill3 Z/
o!l-/t! (T) T3
B b'ro -l . c
2
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Fig. 10 Ordering Of the Shattering
Equation (Sonic Flow)
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For EZ >>1,
LR r
31! -
¢}
and the pressure gradient is expressed as

3

- C [+
bp . 25 (18)
br 1072(1_1')2

The penetration depth of the shock layer gas is deterrnined from eqs. (16)

and (18)
2 2
e P'T (1-7T)
LT 3
° C2 gs
or
) P
max _ 8
1 3
o 16Cz o

For the range of parameters indicated in figure 10, amax <<lo. The shock
layer gas does not penetrate the fragment cloud and the fragment cloud may

be treated as a separate gas or incompressible fluid without surface tension.
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IV. FRAGMENT CLOUD MOTION

A) Model For the Cloud Motion

The analysis of the ice crystal breakup indicates that we may
treat the fragment cloud as a liquid drop without surface tension. We
treat only the mean deformation of the cloud, and any consideration of aero-
dynamic stripping or catastrophic breakup is omitted. When a liquid drop
is out of dynamic equilibrium with a gas, the stagnation pressure will tend
to flatten the liquid drop, increase its drag area and cause it to accelerate
faster than a rigid particle. This effect would tend to slow down shattered
ice crystals that penetrate the shock layer of a hypersonic vehicle and
thereby help ''shield' the vehicle from ice erosion.

To model this effect, we extend an approach used by Reinecke and

(5)

Waldman' =~ in their rain drop studies. Writing the drop's momentum

equation lateral to the relative gas velocity, Reinecke and Waldman(s) use

a moment method to develop an equation for the lateral deformation. Assum-

ing that the lateral liquid velocity is linear in the lateral coordinate, they

obtain
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o

where

4 = R/R_or D/D
[o] Q

uzt {é_

T =
D .
o
u, = initial relative gas velocity
€ = gas density/liquid density = p/D

Cp = pressure coefficient at Raindrop Stagnation Point

The Reinecke and Waldman approach is limited to times for which the rela-
tive velocity u is approximately equal to its initial value u,. Defining the

dimensionless relative velocity v

we extend the Reinecke-Waldman equation to include a time dependent

relative wind




or
ic
dv _ n) zZ 2 .
= ° - (—-.4 Je & (20)

A simultaneous solution to eqs. (19) and (20) is needed to determine the
slowdown and lateral spreading of the deformable, incompressible drop.
B) Early and Late Time Solutions

To obtain a solution eqs. {19) and (20), it is natural to seek an

early time solution of the form

V=Vo +J‘€ vl_-__ a!C =0
A:Ao +VC Al---- as € 20
where
AO =V2Cp T + constant {Reinecke-Waldman Result)
and
v =1,
o

we note that the expansion is singular when both T and Aare 0 (€7 1/6)_

Rescaling the problem to ''late time'', we define
1/6
Y =€ Toy
1/6
r =€ A

-4l=




5_‘/
2z

T Sl .l
e d 1w Tt

“g*‘ and the equations becom=
‘ﬁl'. 2r \? 2
P, +2f33%) =4c_v (21)
de ) P
dv. 3(:D 2!.2 22
a3 T /¥ (22)

The early time soliicion provides the initial conditions to (21) and (22).

v \:' ) = 1

) =0 as¢ =20

—d—r.'— = JZ
dz Cp

Numerical soluticas for v(z)and I‘(Z)are illustrated in Figures 11 and
12 respectively, Over tae time scalez. a substantial deviation from

v = | is noted. The decrease in v is enhanced by the deformation of the
drop. This deformation causes the liguid drop to accelerate more rapidly
than a rigid particle.

If we imagine a shork tube experiment where a stationary liquid

drop is suddenly exposed to a relative wind u, the drop displacement

(xs,r) in the shock tube becomes -

dxsr 23 '
At —uz-u (23)

In the "Reinecke- Waldman Coordinate'', we nondimensionalize to D,

P S
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XST = st /Do

3
. ¥
. : . : 2/3
i whereas in the pregent coordinates, xST is re-scaled by ¢
za
|
. :é YST € xS'.[‘ !
‘§ ) Eq. {Z3) becomas
gr'.‘.‘ d" z— =1 -w (24)
A numerical solution of eq. (24) (coupled to (21) ar” 122) ) is illustrated
' . 3 in Figure 13. The results illusirate a very rapid acceleration at small time.
W Making a omallz exparsion of {(21), (22) and (24), we obtain
r=42c 2z
P
1 3
v = l - i CDCPE
and
i 4
= = C
YST 8 CD P Z
Rescaling to the Reinecke- Waldman cocrdinates
| . 4
' xS'I‘ ) CDCp T (Liquid Drops)
: ' ' whersas, for solid particles, we integrate eq. (20) with 4 = |,
i{' X % 3 C '1"2 {Solid Particles)
sT 8 D




Ygr — SHOCK TUBE DISPLACEMENT (ngcilbo)
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||

Cp=2
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.1 | 10

LATE TIME = €3 Up t/Dg

Fig. 13 Late Time Solution For The
Shock Tube Displacement
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Thus, the acceleration of a liquid drop is significantly different from
that of a solid particle and the difference in demonstrated empirically in
Figure 14. Recent data of Reinecke and Waldman“ b together with that
of Engel(z) closely follows the T4 curv; except for XST >10,where the
T4 results must yield to the numerical solution. Slightly smaller values

D
C) Application to Stagnation Point Erosion

of Cp or C_ would yield even better agreement with the data.

Having developed a model for the dynamics of a deformable,
incompressible fragment cloud, we will now apply the theory o the stagna-
tion point of a hypersonic vehicle and determine the conditions under which
the shattering of the ice crystal into a fragment cloud will help shield the
vehicle from ice erosion.

Considering the stagnation point shock layer to be a static gas, the

penetration (xsp) of the fragment cloud into the shock layer may be written

as
dx
P _ .,
dt
or
dy
—BP _ v. {(25)

LON
Coupling eqs. (25) to eqs. (21) and (23), numerical results are illustrated

in Figure 15. Figures 11 and 15 may be used to determine v(xap). At

x = A', the shock stand off distance, v represents vp the relative velo-

sp
city at impact, and VIZ represents the relative kinetic energy at impact.

-




XgT—SHOCK TUBE DISPLACEMENT (Xsy/Dg)

o

0.1

NUMERICAL
(€ =.002)

/=
/ Cp=2

ENGEL'S DATA

O M =15
O Mg =17 ]
REINECKE-WALDMAN DATA
O Mg=23 _
1 o | L L
10 10°
Up et
TIME T =
Do

Fig. 14 Dynamics Of Liquid Drops
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To determine vf for a sclid particle, use Eq. (20) with A =1 (D = Do).

av (*Sp 2
aT - ‘( 4){5 v

3cﬂ,’€r‘1
v=(l+ 1

Integration yields

and
xl;p = 37 l.n(l+ SCDFT) .
o D ’/
At x'p = As' V=V therefore
VIZ = exp (-3 CDC by L) (Rigid Particles)

The relative impact kinetic energy of solid particles ie compared
to thai of a fragment cloud of the same initial size in Fig. 16, The results
indicate that the smallest size fragment cloud that will not cause damage
to a hypersonic vehicle may be an order of magnitude greater than the
minimun tolerable rigid particle, A specific case :r-eated by Wulz ia
i.lustrated in Fiig. 17 and cornpared to the present results. Wu com.
pared the results for a rigid particle to that for the melting, vaporizing parti-
cle and showed that the critical size for causing damage war above 104,

When ice crystal shattering is accounted for, the vehicle under cousideration

can tolerate up to 50 4 diameter crvstals. The <hielding effect obviously

increases rapidly with increaging nose radius, Consideration of fragment
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cloud melting, vaporization, stripping and Taylor instability should

further increase the 1:~inimum tolerable size ice crystal.
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V, CONCLUSIONS

The problem of ice crystal impact with a hypersonic vehicle has
been addressed. The conditions under which the ice crystal will fracture
at the vehicle shock have been determined. A dynamic fracture criterion,
which is subject to experimental verification, has heen developed to deter-
mine the size and velocity of the crystal fragments. Using the initial frag-
ment size and velocity from the model for dynamic fracture, it has been
shown that the outer fragments continue to fracture and prevent the shock
layer gas from penetrating the fragment cloud. Thus, the fragment cloud
may be treated as a separate incompressible fluid without surface tension.
The dynamics of the fragment cloud is then modeled by extending the

Reinecke- Waldman(s)

model for liquid drop deformation. The lateral
swreading of the fragment cloud may significanily reduce the ice crystals
impact velocity on the hypersonic vehicle, It is shown that the minimum
tolerable fragment cloud may be an order of magnitude greater in gize than
the minimum tolerable rigid particle impacting the vehicle along the same

stagnation point trajectory. Thus, the fracturing of the ice crystals at the

vehicle shock may significantly reduce the erosion of the vehicle.
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